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1. Introduction 

 

During this no-cost extension year, we continued to do data analysis of the ACRIN database by improving 

original solutions with a construction of web-based data center for this project. By merging source data, 

converted data and computed data together to create a relational database and developing facilitating functions,  

we implemented various kinds of data selection requirements in terms of SQL statements, and apply further 

statistics routines to discover more hidden correlations among different quantifies. We updated the design of the 

software pipeline and a computer demo of real-time simulation of breast anatomy and imaging, and developed 

proof for computational complexity of the simulation algorithm and demonstrated its asymptotic efficiency.  

 

2. Body 

 

With this funded project, we will enhance DSU breast cancer research resources by:  improving our expertise in 

translational and clinical breast cancer research; developing methods for computing image-based biomarkers for 

breast cancer risk, as well as methods for biomarker analysis of risk disparity; developing a database of clinical 

biomarkers computed from images of minority women; refining the existing and developing novel data mining 

techniques to determine the relationship between risk and image-based biomarkers.  The improvement will 

support further growth of a sustained breast cancer research program at DSU and help establish us as a 

mid-Atlantic center for analysis of breast cancer risk and risk disparity among minority women.  

The specific objectives of this training program include: (1) extending the skills of a select cadre of DSU 

faculty, so that they may become accomplished, influential and competitive breast cancer researchers; (2) 

establishing an independent breast cancer research program at DSU by performing a joint DSU–UPENN 

research project focused on breast cancer risk disparity in minority populations; and (3) producing a corpus of 

high quality published work and develop a portfolio of independently funded research grants at DSU to support 

a sustained breast cancer research program. 

 

2.1 Objective 1  

Extend the skills of a select cadre of Delaware State University (DSU) faculty, so that we may become 

accomplished, influential, and competitive breast cancer researchers. 

 

o Organize specific training for selected DSU faculty, aimed at complementing our individual scientific 

 background. (Y1-4); and 
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o Augment the faculty training by frequent communications with collaborating mentors and other 

renowned breast cancer researchers, by: (Y1-4) 

 

    

2.1.1 Seminars and Conferences attended 

 

  In August 2013, Dr. Bakic presented an invited talk on the Real Time Simulation of Breast Anatomy, at 

the 2013 AAPM Imaging Symposium on the Virtual Tools for the Validation of 3D/4D X-ray Breast 

Imaging, held in Indianapolis, IN.  The related abstract was published in the July 2013 issue of Medical 

Physics.  The presentation included our joint research results on improving the realism accelerating the 

breast anatomy simulation.  The presentation also featured the activities of the AAPM Taskgroup 

TG234 on the Virtual Tools for Breast Imaging Validation.  (Drs. Pokrajac and Bakic are members of 

TG234.)   

 In December 2013, Dr. Maidment presented an Education Exhibit on the Role of Virtual Clinical Trials 

in Preclinical Testing of Breast Imaging Systems, at the 2013 RSNA Annual Meeting in Chicago, IL.  

At the same meeting, Dr. Bakic presented a scientific paper on the Automated and Optimized Software 

Platform for Virtual Clinical Trials.  Both presentations were co-authored by Dr. Pokrajac, and featured 

results of our joint research on the breast imaging simulation.  

 In February 2014, Drs. Pokrajac and Bakic attended the 2014 SPIE Medical Imaging conference in San 

Diego, CA to present a scientific paper on the Automated Simulation of Microcalcification Clusters in 

Software Breast Phantoms, as well as a Computer Demo of the Software Pipeline for Breast Imaging 

Simulation.   

 Dr. Pokrajac presented results on partial volume simulation and mathematical issues of the simulation 

algorithm on XIII Serbia Mathematical Congress, 2014. Also he gave invited talk on Faculty of 

Electronics, Mechanical Engineering and Ship building and at Kolarac Institution in May 2014. 

 

 

 

 

2.2 Objective 2 

 

Establish an independent breast cancer research program at DSU by performing a joint DSU/Penn 

research project focused on breast cancer risk disparity in minority populations 

 

o  Obtain appropriate IRB approvals for the proposed research. (months 1-6 of Y1) 

  

 Included in Year 1 Report.  

 

 

o  Develop a database of anonymized clinical mammograms and patient metadata, obtained retrospectively 
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 from ACRIN DMIST and Penn PPG trials. (Y1-Y2) 

 

 Included in Year 2 Report. 

 

o  Exploratory study  (Drs. Wilson, Pokrajac, and Liu) Explore potential racial differences 

 in genetic determinants of breast density. (Y2-Y4) 

 

  

2.2.1. Analysis of Mammographic Images and Clinical Metadata of All Minority Women and the Age-

Matched Caucasian Controls from the ACRIN DMIST Database  

 

We continue to do the data analysis of the ACRIN database by improving original solutions with a construction 

of web-based data center for this project. By merging source data, converted data and computed data together to 

create a relational database and developing facilitating functions,  we can easily implement various kinds of 

data selection requirements in terms of SQL statements, execute them to retrieve datasets to apply further 

statistics routines to discover more hidden correlations among different quantifies. Our findings include: 

 The difference of the slope coefficients and determination coefficients for  linear regression between big 

breasts that require two images for one breast and the normal or small breasts is relatively small,  in the 

range of 10%, as shown in Fig 1. Therefore, we included the big breast images as samples for studies.  

 The  difference of  the slope coefficients and determination coefficients for  linear regression between 

MLO-positioned images and CC-positioned images is very large, over 100%, which confirms that the 

algorithm we employ to compute the density is better for the MLO-positioned images than the CC-

positioned images, as shown by the comparison of  Fig 2 and Fig 3. Therefore, we exclude the CC-

positioned images as samples  from now on until in the future we can find another way for computing 

density for CC-positioned images. 

 Women’s  measured breast area does not correlate to the breast cancer risks, in  other word,  the 

regression coefficients are tiny, as shown in Fig 4. 

 The data analysis confirms that the density is strongly, negatively correlated to women’s age, which is a 

common sense for ordinary people,  i.e, the younger  women have  denser  breasts (Fig 5).  Please note 

that the argument that younger women have denser breasts but lower immediately breast cancer is 

against the conjecture that denser breasts have higher breast cancer risk. 

 The women’s  measured breast area is positively correlated to the women’s age, i.e, the older women 

have  the bigger breast area, as shown in Fig 6.  This may be surprising on the first glimpse. However,  

the measured area is not the actual size, but the squeezed 2-D area of breasts.  The finding above, i.e,  

younger women have  denser breasts,  and the fact that denser breasts have smaller room to be squeezed  

logically explain this finding. 
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 The data averaged by race does not support the conjecture that denser breasts have higher risk.  Actually 

it is just other way around with large coefficient of determination, as show in Table 7. Of course, we 

realize that the Gail's model is subject to a large uncertainty for Hispanic/Latino.  

 The finding 4 above suggests that the validity of the conjecture depends on the age. We find that in most 

age intervals,  the breast density is positively but weakly correlated to the breast cancer risk, as shown in 

the Table 8. The linear regression coefficients indeed depend on the age heavily. 

 In the age interval 40-45 and 62-72, the positive correlation between breast density and breast cancer 

risk is much stronger than other age intervals, as shown in Fig 9.  

  

The findings above are based on our recent work of successful development of a web data center . The functions 

of the data center include (1) allowing user to design relational database on the web by providing a GUI 

interface to the web databases, (2) accepting data input from user manually or from remote application 

programs,  (3) converting data from other data source format such as CSV file  which is a common format for 

clinical data (4) allowing user to compose various queries to select data sets  from  various selection  caritas, (5) 

displaying data as web pages and export data to Excel spreadsheets for performing further data analysis.   

 

 

 
Fig 1. The linear regress plot of the breast density vs. life-time breast cancer risk for “big breast” women 
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Fig 2. The linear regress plot of the breast density vs. life-time breast cancer risk for “normal-size” breast women 

(position: MLO) 

 

 

     

 

 
 

Fig 3. The linear regress plot of the breast density vs. Life-time breast cancer risk for “normal size breast” women 

(position: CC) 
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  Fig 4.   The weak correlation between breast area  and  life-time breast cancer risk 

 

 
Fig 5. The strong negative correlation between Age and  breast Density. 

 

 
 

Fig 6. The strong positive correlation between women’s age and the measured breast area 
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Race Patients Age Images Breast  

Area 

Dense  

Area 

Density Risk  

5Year 

Risk  

Life 

Asian 238 54.22 2.16 117.42 44.48 40.03 1.09 7.05 

Black 1744 53.65 3.13 167.73 62.84 38.13 1.23 7.98 

Hispanic 

/Latino 

217 52.45 2.51 143.99 64.90 45.40 0.79 6.23 

White 2481 53.74 2.56 144.89 56.97 40.88 1.38 9.69 

 

Fig 7.  The average numbers of interests by race 

             

Center 

of Age 

Interval 

Number 

of 

Patients 

Slope of 

Linear 

Regression 

Coefficients 

Of 

Determination 

36 113 0.032843 0.023696 

40 135 0.004559 7.67E-04 

41 139 0.001818 1.41E-04 

42 161 0.021103 0.014249 

43 146 0.010153 0.003441 

44 145 0.025072 0.023202 

45 192 0.005164 0.001121 

46 198 -0.0091 0.005601 

47 182 -0.00683 0.001798 

48 173 -0.01293 0.010095 

49 176 5.00E-04 1.17E-05 

50 175 0.00754 0.003063 

51 210 -0.01771 0.012417 

52 174 0.002875 3.99E-04 

53 219 -0.00871 0.003447 

54 176 -0.01311 0.007823 

55 171 -5.32E-04 1.64E-05 

56 158 0.016326 0.012772 

57 158 -0.01571 0.01192 

58 140 0.011876 0.006563 

59 131 0.014717 0.011779 

60 116 -0.0165 0.013812 

61 118 -0.00179 2.53E-04 

62 103 0.008103 0.003058 

64 169 0.009127 0.006134 

66 180 0.010356 0.011963 

68 135 0.014086 0.018304 

70 104 0.024838 0.097342 

72 121 -0.00443 0.002877 

76 109 -0.00644 0.010156 

82 53 -0.00736 0.017216 

 

Table 8. This table shows how and how much the breast density is correlated to the breast cancer risk in different age intervals.  It 

shows that in most age interval, they are positively correlated. 
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Fig 9. The distribution of  the slope coefficient of linear regression over age. This picture shows that in the age interval of  40-45 and 

62-72, the positive correlation between breast density and breast cancer risk is strong. 

 

2.2.2. Mammogram Image Registration/Fusion 

Image Registration by Using Spline Functions 

 

Image registration is an image processing to transform different sets of data in which one has an overlap 

with another into one coordinate system. Usually, the data is multiple photographs such as the data from 

deferent sensors, times, depths, or viewpoints. Image registration is a very important and popular research 

field in image processing, not only because the requirement of the medical images processing such as 

Computational Anatomy(CA) which is applied to study health, disease and epidemiology and uses 

deformable mappings between images as a basic technique, but also because it is the basis for the 

application of the meteorological satellite spectral image data. There are various methods for image 

registration, such as affine, deformable DMFFD, diffeomorphic transformation method with MI, MSQ or 

CC as its similarity measure, thin spline method, landmark method and so on. Different from these 

methods, we introduced a new image registration method by using multivariate spline functions. The 

flexibility of constructing multivariate spline functions is one of the reasons that they are applied in image 

registration. That is, multivariate spline functions can be conveniently used to approximate real data 

locally. Actually, for the corresponding portions of an overlap part of two images, one can be locally 

treated as the image obtained by an affine transformation of the other. This indicates that we can partition 

two images into small parts and then register each small part onto its corresponding portion of the 

reference image. This is the basic idea of our spline image registration method. To facilitate the application 

with previous results, the range of multivariate spline function is taken as matrix variable. The basic idea 

of our method is as follow: we first translate one image, called reference image, into the output image, and 
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then register others, called source images, to the output image by spline functions. Since quadratic is the 

lowest possible degree to construct smooth multivariate splines, we first apply quadratic multivariate spline 

defined over Powell-Sabin type triangulations to image registration.  The experiment results show that, 

comparing previous methods, the registration outputs have better matching and keep more details with 

better fair looking. 

 

A novel breast image registration method is proposed to obtain a composite mammogram from several 

images with partial breast coverage, for the purpose of accurate breast density estimation. The breast 

percent density estimated as a fractional area occupied by fibroglandular tissue has been shown to be 

correlated with breast cancer risk. Some mammograms, however, do not cover the whole breast area, which 

makes the interpretation of breast density estimates ambiguous. One solution is to register and merge 

mammograms, yielding complete breast coverage. Due to elastic properties of breast tissue and differences 

in breast positioning and deformation during the acquisition of individual mammograms, the use of linear 

transformations does not seem appropriate for mammogram registration. Non-linear transformations are 

limited by the changes in the mammographic projections pixel intensity with different positions of the focal 

spot.  We propose a novel method based upon non-linear local affine transformations. Our algorithm 

requires that feature points be extracted prior to registration, and the result of registration will depend on 

the reliability and accuracy of the extracted features. Automatic identification and extraction of feature 

points is difficult due to the non-linear compression deformation and the lack of significant landmarks in 

mammograms . We observe the prominent features (such as ducts and blood vessels) from both images. 

The crossing points are determined upon visual similarity in both mammograms. Due to compression and 

different positions of the breast, the coordinates of those crossing points may be different in the two 

mammograms, but the orientation of feature and local curvature of crossing points are more likely to be 

preserved. We also select other features (end points and middle points) in a small neighborhood around the 

selected crossing points. Subsequently, the deformation between two sets of feature points can be 

estimated. Given two sets of feature points in two images that need to be registered, we assume the 

deformation between them can be approximated by affine transformation, which can be considered as a 

first-order approximation of the true transformation resulting from breast projection.  Finally, Shepherd 

interpolation is employed to compute affine transformations for the rest of the image area. The pixel values 

in the composite image are assigned using bilinear interpolation. We present preliminary results using the 

proposed approach applied to clinic mammograms taken from the ACRIN DMIST database of 

mammograms. This work is a part of a larger study of racial disparity in breast cancer risk. For that project, 

breast percent density and parenchymal texture of minority women and age-matched Caucasian controls 

from the ACRIN DMIST database are being compared.  To date, we have been able to achieve anecdotal 

results that support continued development and testing of this new method. The proposed method is robust, 
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since the results of registration are similar regardless of the choice of the reference image. The observable 

features, especially the nipple and the boundary of skin, have good agreement. The results of the proposed 

method are comparable to the results of the diffeomorphic transform implemented using ANTs, an open 

source software package. Particularly, the textures of warped image are preserved in registered images, and 

the shape of registered image is similar as reference image. The registration error is smaller in the region of 

overlap (the upper part of the registered image), since we can extract the corresponding feature points only 

from this region. . The proposed transformation can be controlled locally. Moreover, the method is 

converging to the ground truth deformation if the paired feature points are evenly distributed and its 

number is large enough .In our future work, we plan to perform more extensive quantitative validation of 

the proposed algorithm on a series reference and warped images extracted from all the applicable images in 

the ACRIN DMIST database. Also, we will apply the technique to more images in the ACRIN DMIST 

database and develop statistical measures of the registration accuracy. 

 

During this granting period Drs. Pokrajac and Bakic arranged several Skype teleconferences with the 

research lab of Dr. Aleksandar Peulic from the University of Kragujevac, Serbia, who continued the 

project previously performed by Dr. Feiyu Chen and Mr. Penglong Xu.  Also, Dr. Pokrajac met Dr. Peulic 

nad his group at his research tip to Serbia in October 2013. Currently, Dr. Peulic is working on registration 

of mammographic images belonging to large breasts using ANTs software. The initial results indicate the 

possibility of good stitching of images belonging to the same breast. 

 

2.2.3. Breast Phantom Simulation and Analysis 

  

Software Pipeline for Breast Anatomy and Imaging Simulation 

 

The pipeline connects anatomy and imaging simulation components, necessary for the performance of virtual 

clinical trials, for preclinical validation of breast imaging systems.  The components are connected using the 

XML-based parsimonious data representation.  Optimized simulation algorithms and their GPU-based 

implementation allows very fast (practically real time) simulation, supporting  virtual trials with very large 

number of simulated anatomies.  The pipeline design and simulation were discussed in our publications at 2013 

AAPM, 2013 RSNA, and 2014 SPIE conferences.   
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Fig 10. Flowchart of the Software Pipeline for Breast Anatomy and Imaging Simulation  

 

Automated Insertion of Simulated Microcalcification Clusters into Software Breast Phantoms 

3D clusters of microcalcifications, extracted from reconstructed clinical images, are inserted at randomly 

selected positions out of a set of the candidate positions.  The candidate positions are identified based upon the 

assumptions about the origin of microcalcifications.  Directed placement is based upon the assumption that 

clusters may occur only in non-adipose tissue regions; undirected placement presumes that clusters may be 

found anywhere inside the breast.  In both cases, the candidate positions are identified by convolving a 3D 

rectangular hull (around the cluster) with phantom regions of non-adipose tissue (in case of directed placement) 

or with the breast interior (for undirected placement).  These two placement strategies were validated in a 2-

alternative forced choices observer study with 3 clinical radiologists as observers.  Each observer reviewed 450 

image pairs and indicated their preference between the directed and undirected placement.  The study suggested 

observer’s preference for undirected placement.  More details are found in our 2014 SPIE talk.   

 

 

 

 

 

 

 

 

 

 

 

 

Fig 11.  Flowchart of the method for automated insertion of simulated clusters into a software  phantom 
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o  Prepare peer-review publications on the results of the proposed research. (Y3-Y4) 

 

Our manuscript about the simulation of partial volume is currently in review.  Also, our manuscript on 

computational complexity of the recursive partitioning algorithm is in final stages of preparation and shall be 

submitted by August 2014. In addition, two papers were accepted for the 2014 International Workshop on 

Breast Imaging (IWDM), held in Gifu, Japan in July 2014.  The papers describe our preliminary results on the 

simulation of small scale tissue structures by subdivision of phantom adipose compartments, as well as the 

preliminary results in the correlation between topological and textural properties extracted from clinical breast 

images.  Both properties have been previously related with the breast cancer risk, thus their correlation may 

offers an improved estimation of risk.  

 

o  Validate success of the research training program by annual teleconferences with and bi-annual visits by 

external Advisory Committee. 

N/A  

 

1.3 Objective 3 

 

Produce a corpus of high-quality published work and develop a portfolio of independently funded 

research grants at DSU to support a sustained breast cancer program 

 

 See Reportable outcomes for publications 

 Submitted a revised version of our NIH R01 grant proposal to the RFA on the Continued Development 

of Biomedical Software (PAR-11-028): http://grants.nih.gov/grants/guide/pa-files/PAR-11-028.html) D. 

Pokrajac, P. Bakic, A. Maidment 

 Submitted a Delaware INBRE pilot proposal “Improving Realism of Software Breast Phantoms” (D. 

Pokrajac). The proposal has been funded in the amount of $160,000.  

 

3. Important Findings 

 

 Updated the design of the software pipeline for real-time simulation of breast anatomy and imaging.  

 Developed a computer demo of the real-time simulation of breast anatomy and imaging 

 Developed an automated method for the insertion of calcification clusters into software breast phantoms, 

and validated the method in observer trial with clinical radiologists as observers.  

 Developed preliminary method for the simulation of small scale tissue structures 

 Performed preliminary analysis of the correlation between topological and textural properties extracted 

from clinical breast images  

 Developed preliminary algorithm for modeling of ducts  
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 Developed proof for computational complexity of the simulation algorithm and demonstrated its 

asymptotic efficiency 

 Developed a web-based data center for this project, which includes database design and merge of source 

data, converted data and computed data together into relational database tables 

 Developed facilitating functions allowing us to implement various data selection requirements in terms 

of SQL statements that can be executed to retrieve datasets for statistic software to take as input 

 Confirmed that the validity of the conjecture that denser breasts have high breast cancer risk depends on 

age, i.e., in certain age intervals, the positive correlation does exists    

 

 

4. Reportable Outcomes 

 

Publications (journal papers and conference proceedings):  

 

 Bakic, P., Myers, K., Reiser, I., Kiarashi, N., Zeng., R.: “Virtual Tools for Validation of X-ray Breast 

Imaging Systems,” Medical Physics, 40: 3133. 2013. 

 Bakic, P.R., Maidment, A.D.A., Chui, J.H., Avanaki, A.N., Marchessoux, C., Pokrajac, D.D, Espig, K., 

Kimpe, T., Xthona, A., Lago, M., Shankla, V.: “Automated and optimized imaging simulation platform 

for virtual clinical trials of breast cancer screening.”  In Proc. of the Scientific Assembly and Annual 

Meeting of the Radiological Society of North America, 2013. 

 Maidment, A.D.A., Bakic, P.R., Chui, J.H., Avanaki, A.N., Marchessoux, C., Pokrajac, D.D, Espig, K., 

Kimpe, T., Xthona, A., Lago, M., Shankla, V.: “The role of virtual clinical trials in preclinical testing of 

breast imaging systems.”  In Proc. of the Scientific Assembly and Annual Meeting of the Radiological 

Society of North America, 2013. 

 Shankla, V., Pokrajac, D.D., Weinstein, S.P., Conant, E.F., Maidment, A.D.A., Bakic, P.R.: “Automatic 

insertion of simulated microcalcification clusters in a software breast phantom,” In Physics of Medical 

Imaging, Proc. SPIE 9033, ed. by B. Whiting, C. Hoeschen, D. Kontos, 2014. 

 Abbey, C.K., Bakic, P.R., Pokrajac, D.D., Maidment, A.D.A., Eckstein, M.P., Boone, J.M.: “Non-

Gaussian Statistical Properties of Virtual Breast Phantoms,” In Image Perception, Observer 

Performance, and Technology Assessment, Proc. SPIE 9037, edited by C. Mello-Thoms, M. Kupinski, 

2014. 

 P. Bakic, D.Pokrajac, R.DeCaro, A.Maidment, “Realistic simulation of breast tissue microstructure in 

software anthropomorphic phantoms,” Proc. IWDM 2014, in press. 
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 T. Nuzhnaya, A. Skoura, G. Cardenosa, V. Megalooikonomou, D. Kontos, D. Pokrajac, P. Bakic, A. 

Maidment,  “Correlation between topological descriptors of the breast ductal network extracted from 

clinical galactograms and texture features of corresponding mammograms,” Proc. IWDM 2014, in press. 

 

Presentations:  

 Breast Tissue Simulation with Recursive Partitioning Algorithm, Faculty of Electronics, Mechanical 

Engineering and Ship building, Split, Croatia, May 21, 2014 (Pokrajac, Bakic, Maidment), invited talk 

 

 Simulation of Breast Tissues using Computer Algorithms, Kolarac Institution, Belgrade, Serbia, May 

30. 2014 (Pokrajac, Bakic, Maidment), invited talk 

 

 Partial volume simulation in software breast phantoms, XIII Serbian Mathematical Congress, Vrnjacka 

Banja, Serbia, May 23, 2014 (Pokrajac, Bakic, Maidment, Shi, Chen) 

 

 Mathematical Issues in Software Breast Phantom Simulation, XIII Serbian Mathematical Congress, 

Vrnjacka Banja, Serbia, May 23, 2014 (Pokrajac, Maidment, Petkovic, Bakic), invited talk 

 

 

5. Conclusion 

 

During the last no-cost extension year, we focused on joint research between DSU and UPENN.  

We have addressed several issues related to racial disparity in breast cancer. In particular, we observed 

correlation between demography variables and the estimated cancers risk. We tested several methods co-

registering mammograms containing multiple images .We have considered linear correlation between textures 

of mammograms and the graph theoretic measures of ductal network. The initial results indicated significant 

correlation for particular texture features. We continued our simulation efforts in verifying the optimal 

placement calcifications  in simulated 3D phantoms. Also, we worked on the entropy-based phantom validation 

techniques on our phantom. We provided the mathematic proof that sets the algorithmic complexity boundaries 

of the simulation algorithm and demonstrates its asymptotic optimality. Our work in progress include further 

research on the optimal co-registration, correlation of texture and galactograms and further development of 

simulation for subcutaneous tissue and milk ducts. 
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ABSTRACT 

An automated method has been developed to insert realistic clusters of simulated microcalcifications (MCs) into 
computer models of breast anatomy.  This algorithm has been developed as part of a virtual clinical trial (VCT) software 
pipeline, which includes the simulation of breast anatomy, mechanical compression, image acquisition, image 
processing, display and interpretation.  An automated insertion method has value in VCTs involving large numbers of 
images.  The insertion method was designed to support various insertion placement strategies, governed by probability 
distribution functions (pdf).  The pdf can be predicated on histological or biological models of tumor growth, or 
estimated from the locations of actual calcification clusters.  To validate the automated insertion method, a 2-AFC 
observer study was designed to compare two placement strategies, undirected and directed.  The undirected strategy 
could place a MC cluster anywhere within the phantom volume.  The directed strategy placed MC clusters within 
fibroglandular tissue on the assumption that calcifications originate from epithelial breast tissue.  Three radiologists were 
asked to select between two simulated phantom images, one from each placement strategy.  Furthermore, questions were 
posed to probe the rationale behind the observer’s selection.  The radiologists found the resulting cluster placement to be 
realistic in 92% of cases, validating the automated insertion method.  There was a significant preference for the cluster to 
be positioned on a background of adipose or mixed adipose/fibroglandular tissues.  Based upon these results, this 
automated lesion placement method will be included in our VCT simulation pipeline.  

Keywords: Software breast phantom, simulated microcalcification clusters, volumetric distribution of breast 
microcalcifications, 2-AFC observer study  

1. INTRODUCTION 

A variety of new 3D breast imaging technologies (e.g., stereomammography, tomosynthesis and computed tomography) 
are currently undergoing clinical investigation.  These modalities offer specific technical advantages, such as superior 
spatial or contrast resolution.  However, before widespread clinical adoption can occur, any new breast imaging system 
must undergo optimization and pass clinical validation.  To safely accelerate this process, we have developed a 
preclinical validation method in the form of virtual clinical trials (VCT), based upon computer simulations of breast 
anatomy, image acquisition and interpretation (1-4).  Other simulations of breast imaging have also been reported (5-9).  
Breast anatomy simulation provides the flexibility needed to simulate a broad range of anatomical variations, while 
providing the ground truth of simulated tissues needed for quantitative validation.  

The visibility of microcalcification (MCs) in clinical images is of critical importance for breast imaging, as MCs can be 
the only sign of early cancer.  To conduct a VCT of early breast cancer screening comparing digital mammography 
(DM) and digital breast tomosynthesis (DBT), we developed a method to insert MC clusters into our existing breast 
anatomy model automatically.  Simulation of MC clusters in breast images has been reported in the literature.  MC 
clusters have been extracted from both biopsy specimen (10, 11) or mastectomy specimen (12) images.  Here, we report 
on a method using clusters extracted from stereoscopic biopsy images (13, 14).   

Previous reports used manually selected locations (11).  Here, we implement two automated strategies for MC 
placement:  “undirected” and “directed”.  Both strategies use an underlying probability distribution function (PDF) of 
potential cluster locations.  In the undirected strategy, the PDF is uniform within the entire volume of the breast, while in 
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the directed strategy, the PDF is based upon the breast anatomy.  In this paper, we consider a directed strategy in which 
MC only occur within fibroglandular tissue regions.  The insertion method and placement strategies were validated in a 
two-alternative forced-choice (2-AFC) observer study with three radiologist observers.   

2. MATERIALS AND METHODS 

2.1 Breast anatomy simulation 

2.2.1 Simulation of normal breast tissue  

The Penn anthropomorphic software phantom simulates the breast as a set of tissues arrayed spatially, including:  skin, 
adipose tissue, fibroglandular tissue, and Cooper’s ligaments.  Compartments within a matrix of Cooper’s ligaments are 
simulated using a recursive partitioning algorithm (4).  The compartments are then filled with adipose or glandular tissue 
according to rules governing spatial distribution (15).  The resulting compartments vary in shape and size, creating a 
realistic simulation of the breast parenchyma.  Simulation parameters can be set to simulate the full breadth of breast 
anatomy observed clinically.   

After the generation of the breast phantom, clinical mammographic compression of the phantom is modeled by 
deforming the uncompressed phantom using 3D finite element methods (16-18).  Mammography and DBT image 
acquisition is currently simulated by ray tracing projections through the phantom, as described below.  Processed DM 
and reconstructed DBT images are obtained using the Real-Time Tomography (RTT, Villanova, PA) image processing 
and reconstruction software (19). 

2.1.2 Simulation of calcification clusters  

MC clusters used in this work are from an existing database of 130 clusters segmented from anonymized stereoscopic 
breast biopsy images (13, 14).  Each cluster in the database is stored as a 3D binary volume, with a voxel value of ‘1’ 
representing calcified material and a value of ‘0’ representing the background tissue.  Before insertion, each cluster is 
resampled to match the phantom voxel size.  Since the clusters are most typically down-sampled, a fractional volume per 
voxel is calculated to preserve the quality of the MCs.  Fig. 1 illustrates a selection of simulated MC clusters; the images 
were created by 3D rendering tomographic images in an orientation identical to that used in the study.  Fig. 2 provides 
additional details regarding the 130 clusters available in the database.  A histogram of the volume of individual MCs in 
shown in Fig. 2A; a histogram of the cluster volume is shown in Fig. 2B; and, a histogram of the number of MCs in a 
cluster is shown in Fig. 2C.  These data show that the MCs and clusters used in the study are representative of those seen 
clinically. 

 

 
(a) (b) (c) 

Figure 1:  3D renderings of simulated clusters corresponding to (a) a benign fibroadenoma; 
(b) malignant DCIS (micropapillary grade 1); and (c) benign fibrocystic change with focal sclerosing adenosis. 

 
2.2 Cluster insertion method 

A flowchart of the automatic insertion method is shown in Fig. 3.  The process begins with the selection of a phantom 
and a cluster to be inserted.  A volume of interest (VOI) within the breast is determined based upon the probability 
distribution function of potential cluster locations.  The software then searches for potential locations within the VOI.  
First, the minimum rectangular hull of the cluster (a rectangular prism that envelopes the cluster) is calculated.  Then, the 
rectangular hull is convolved with the VOI to generate a set of candidate locations.  The convolution is performed 
sequentially along the three orthogonal axes for computational expediency.  The software then randomly selects one of 
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the candidate locations as the point of insertion.  If the convolution does not return any candidate insertion points, then 
that phantom cannot be used with that cluster. 

(a) (b) 

 

 

(c)  
 

 
 
 

Figure 3:  Flowchart of the automatic insertion process 

Calculate rectangular hull of the cluster 

Convolve rectangular hull with phantom 
VOI to identify candidate locations 

Randomly select insertion point from 
 list of candidate locations 

Replace phantom voxels values with 
simulated calcified material 

 
Input: Selected phantom 

and cluster 

Figure 2:  Histograms of (a) MC volume; 
(b) the cluster volume; (c) the number of 
MCs in a cluster.
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A cluster is inserted into a phantom by replacing the voxel values of the phantom with calcified material (as detailed 
below) wherever the binary value of the cluster model is “1”.  In this work, the orientation of the cluster from the original 
database is preserved during insertion.  Rotation of the cluster model would require recalculation of the rectangular hull.  
Rotation is one of the methods we intend to explore in the future to increase the variability of the cluster appearance. 

We have evaluated both directed and undirected MC cluster placement strategies.  The undirected strategy assumes that 
MCs can be located anywhere within the breast volume.  The directed strategy assumes that the location of MCs is 
restricted in some sense.  Here we implement a directed strategy based upon the assumption that MC clusters of clinical 
interest are not located within adipose tissue regions; that is, MCs originate from breast epithelial tissue.  Thus, the VOI 
for the directed strategy consists of the set of all non-adipose phantom voxels.  This VOI is convolved with the cluster 
rectangular hull to identify candidate insertion locations, as described above.  

2.4 Simulation of mammographic projections 

We simulated mammographic projections of the phantoms using a poly-energetic ray tracing method.  Each voxel in the 
software phantom is associated with a linear attenuation coefficient, corresponding to the simulated tissue type.  The 
voxels corresponding to inserted MCs were simulated as an admixture of calcified material and the background phantom 
tissue, with the linear attenuation coefficient given by: 

,ሺ݂′ߤ ܿሻ ൌ ௖ܿߤ݂ ൅ ሺ1 െ ݂ሻߤ௣ (1) 

where ߤ′ is the linear attenuation coefficient for a voxel in a phantom with a MC cluster; f is the fraction of the voxel 
volume occupied by the calcified tissue (0<f<1); ߤ௖ is the linear attenuation coefficient of calcium hydroxyapatite; ܿ is a 
parameter controlling the contrast of MCs in synthetic images (0<ܿ<1); and ߤ௣ is the linear attenuation coefficient of the 
phantom voxel before insertion.  The resulting images were post-processed using a commercial image processing 
software package (Adara, Real Time Tomography, Villanova, PA) and saved in DICOM format.  

2.5 Human observer study 

We designed a 2-AFC observer study to validate the MC insertion method and compare the MC placement strategies.  
Images were created with both the directed and undirected placement strategies for every phantom-cluster pair from a set 
of phantoms and MC clusters.  The observers were then required to select between images of the phantom produced with 
the two placement strategies.   

Using a small pilot study (with one radiologist and 80 image pairs), we estimated that 450 image pairs were needed for 
the desired statistical power (Type II error < 0.05 with a Type I error of 0.05, resulting in an actual probability of a 
radiologist preferring direct placement in less than 42% of trials).  To that end, we created 33 phantoms and selected 16 
clusters from the database.  The phantoms simulated a 450 ml breast with a thickness of 5 cm when compressed.  Three 
sets of 11 phantoms each were created, with 15%, 20% and 30% volumetric glandularity, respectively.  The clusters 
were selected based upon the number of individual MCs, and the spatial extent of the cluster.  The number of MC in a 
cluster varied from 5 to 16.  The cluster volume ranged from 0.008 to 9.328 mm3.  Among the 16 selected clusters, 10 
were benign and six were malignant based on the pathology reports. 

The image pairs for the 2-AFC study were generated by combining an image from each placement strategy for a given 
phantom-cluster pair.  The left-right ordering of images, as well as the sequence of phantom-cluster pairs were 
randomized to avoid observer bias.  Images were displayed using ViewDex (ver. 1.0_03; Sahlgrenska University 
Hospital and University of Gothenburg, Sweden) (20). 

Each observer was instructed to select one image per pair based upon the plausibility of the cluster location in the 
phantom volume.  For each image-pair shown, the observer was asked to answer four questions (see Fig. 4):  (1) the 
visibility of the simulated cluster (in case of a negative answer, the remaining questions for the same image-pair were not 
considered for analysis); (2) the cluster realism (rated by five descriptive categories); (3) the preferred image of the pair; 
and (4) the confidence of the indicated preference (rated by a five category scale).  The observer was instructed to select 
zero confidence if the observer had no preference between the images.  The software recorded the answers along with 
elapsed time per image pair.  

Three observers (all breast imaging fellows) participated in the 2-AFC study.  During the study, we encouraged the 
observers to describe the rationale behind their preference, in terms of the MC cluster shape and location.  The observer 
comments were recorded and matched with the appearance of simulated images.  
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Figure 4: The 2-AFC observer study user interface, with an image pair and corresponding questions. 

 
2.6 Statistical analysis 

The observation data was analyzed as follows.  Assume that a human observer is given a pair of images and with 
unknown probability p chooses a particular image.  Let X=1 if the image with directed placement is chosen, and 
otherwise let X=0.  The observer is provided a total of N image pairs.  The random variable ܻ ൌ ∑ ௜ܺ

ே
௜ୀଵ  has a Binomial 

distribution with parameters N and p.  Under the null-hypothesis, H0, the observer does not have a preference between 
the directed and undirected strategies and p=0.5.  To test H0 vs. Ha (that the observer prefers undirected placement, 
p<0.5), we count the number of times, n, the observer chooses the directed placement.  The p-value of the statistical test 
is computed as: 

p‐value ൌ ∑ ቀܰ
݅
ቁ 0.5௜௡

௜ୀ଴ 0.5ேି௜       (2) 

We have also analyzed the dependence of the observers’ preference on several factors, including the self-reported cluster 
realism level, the observer’s confidence about the preference, the composition of the phantom at the location of cluster 
insertion, as well as the cluster location within the phantom.  

3. RESULTS 

3.1 Sections and projections of phantom with inserted MC clusters 

Examples of the directed and undirected placement of MC clusters are shown in Figs. 5 and 6.  Figure 5 shows the 
phantom and cluster in a single cross-section selected from the 3D volume.  Figure 6 are projection images of the cluster 
after processing.  These are typical of the images presented to the observers.  We have added magnified regions of 
interest to aid in the review of the images for readers of this paper. 

3.2 Observer study results 

Overall preference of the directed cluster placement, calculated individually for each observer, as well as for all three 
observers combined, is shown in Table 1.  The tabulated results indicate that the most of the clusters (93%) were visible.  
All the observers statistically significantly preferred the undirected placement strategy.   

The observer’s preference for insertion methods were further analyzed as a function of the confidence of their answers 
and cluster realism.  The results are tabulated in Tables 2 and 3. 

Proc. of SPIE Vol. 9033  90331Z-5

Downloaded From: http://spiedigitallibrary.org/ on 03/20/2014 Terms of Use: http://spiedl.org/terms



                                                        
               (a)                                              (b)                                            (c)                                             (d)               

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                (a)                                                                                       (b) 

Figure 6: Typical image pairs used in the validation study.  Shown are synthetic mammographic  
projections corresponding to the phantoms from Fig. 5.  Enlarged are regions with inserted MCs. 

 

 

Figure 5: Phantom slices illustrating two MC placement strategies.  Enlarged are regions with inserted MCs.  (a) A phantom 
with 15% glandularity, and directed placement; (b) the same phantom with undirected placement; (c) A phantom with 30% 

glandularity and directed placement; (d) the same phantom with undirected placement. 
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Table 1:  Observer preference for the directed placement strategy. 

Observer 
Visible MCs   
(% of total) 

Pref. directed  
(% of visible) p-value 

1 419 (93.11%) 169 (40.33%) 4 x 10-5 

2 416 (92.44%) 104 (25%) 2 x 10-25 

3 416 (92.44%) 136 (32.69%) 7 x 10-13 

All 1251 (92.67%) 409 (32.69%) 3 x 10-25 

Table 2:  Observer preference for the directed strategy shown as a function of cluster realism. 

Realism 
 

Low 
(0%) 

Low/Aver 
(25%) 

Aver 
(50%) 

Aver/High 
(75%) 

High 
(100) 

Observer 1 
Visible MCs (% total) 

 
0 (0%) 

 
62 (15%) 

 
124 (30%) 

 
278 (42%) 

 
55 (13%) 

Pref. directed (% visible) 0 (0%) 27 (44%) 62 (50%) 65 (37%) 15 (27%) 
p-value n/a 0.19 0.54 2 ൈ ૚૙ି૝ 5 ൈ ૚૙ି૝ 

Observer 2 
Visible MCs (% total) 

 
0 (0%) 

 
33 (8%) 

 
83 (20%) 

 
155 (37%) 

 
145 (35%) 

Pref. directed (% visible) 0 (0%) 5 (8%) 25 (30%) 37 (24%) 37 (26%) 
p-value n/a 3 ൈ ૚૙ି૞ 2 ൈ ૚૙ି૝ 2 ൈ ૚૙ି૚૚ 1 ൈ ૚૙ିૢ 

Observer 3 
Visible MCs (% total) 

 
0 (0%) 

 
2 (0.5%) 

 
52 (12%) 

 
356 (86%) 

 
6 (1%) 

Pref. directed (% visible) 0 (0%) 1 (50%) 19 (37%) 116 (33%) 0 (0%) 
p-value n/a 0.75 0.04 2 ൈ ૚૙ି૚૚ n/a 

All Observers 
Visible MCs (% total) 

 
0 (0%) 

 
97 (8%) 

 
259 (21%) 

 
689 (55%) 

 
206 (16%) 

Pref. directed (% visible) 0 (0%) 33 (34%) 106 (41%) 218 (32%) 52 (26%) 
p-value n/a 1 ൈ ૚૙ି૜ 2 ൈ ૚૙ି૜ 1 ൈ ૚૙ି૛૛ 3 ൈ ૚૙ି૚૜ 

Table 3:  Observer preference for the directed strategy shown as a function of decision confidence. 

Confidence Low 
(0%) 

Low/Aver 
(25%) 

Aver 
(50%) 

Aver/High 
(75%) 

High 
(100) 

Observer 1 
Visible MCs (% total) 

 
41 (10%) 

 
64 (15%) 

 
72 (17%) 

 
209 (50%) 

 
33 (8%) 

Pref. directed (% visible) 16 (39%) 32 (50%) 34 (47%) 77 (37%) 10 (30%) 
p-value 0.10 0.55 0.36 9 ൈ ૚૙ି૞ 0.02 

Observer 2 
Visible MCs (% total) 

 
19 (5%) 

 
93 (22%) 

 
71 (17%) 

 
152 (37%) 

 
81 (19%) 

Pref. directed (% visible) 9 (47%) 34 (37%) 26 (37%) 29 (19%) 6 (7%) 
p-value 0.50 6 ൈ ૚૙ି૜ 0.02 3 ൈ ૚૙ି૚૞ 1 ൈ ૚૙ି૚૟ 

Observer 3 
Visible MCs (% total) 

 
88 (21%) 

 
180 (43%) 

 
133 (32%) 

 
14 (3%) 

 
1 (0.2%) 

Pref. directed (% visible) 44 (50%) 53 (29%) 34 (26%) 5 (36%) 0 (0%) 
p-value 0.54 2 ൈ ૚૙ିૡ 7 ൈ ૚૙ିૢ 0.21 0.5 

All Observers 
Visible MCs (% total) 

 
148 (12%) 

 
337 (27%) 

 
276 (22%) 

 
375 (30%) 

 
115 (9%) 

Pref. directed (% visible) 69 (47%) 119 (35%) 94 (34%) 111 (30%) 16 (14%) 
p-value 0.23 4 ൈ ૚૙ିૡ 6 ൈ ૚૙ିૡ 8 ൈ ૚૙ି૚૟ 4 ൈ ૚૙ି૚૟ 
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directed loc's
pref directed

As stated elsewhere in the paper, in the directed strategy, clusters were always positioned on a background of non-
adipose tissues.  In the undirected strategy, however, the cluster could be positioned over adipose and non-adipose 
tissues.  Table 4 shows the observers’ preference as a function of composition of background tissues, calculated as the 
percentage of non-adipose tissue in regions of phantoms that correspond to the rectangular hull of the inserted cluster.  

Table 4:  Observer preference as a function of the background composition of the undirected MC clusters. 

Phantom % dense  
@ insertion location 

Very dense Predom. dense Average Predom. fat Very fatty 

Observer 1 
Visible MCs 

 
49 

 
5 

 
20 

 
66 

 
58 

Pref. directed (% vis.) 23 (47%) 2 (40%) 8 (40%) 25 (38%) 18 (31%) 
p-value 4 ൈ 10ିଵ 5 ൈ 10ିଵ 2 ൈ 10ିଵ 3 ൈ ૚૙ି૛ 3 ൈ ૚૙ି૜ 

Observer 2 
Visible MCs  

 
48 

 
5 

 
20 

 
67 

 
57 

Pref. directed (% vis.) 21 (44%) 1 (20%) 8 (40%) 16 (24%) 11 (19%) 
                         p-value 2 ൈ 10ିଵ 2 ൈ 10ିଵ 2 ൈ 10ିଵ 1 ൈ ૚૙ି૞ 2 ൈ ૚૙ି૟ 
Observer 3 

Visible MCs 
 

47 
 
5 

 
20 

 
66 

 
59 

Pref. directed (% vis.) 20 (43%) 2 (40%) 11 (55%) 24 (36%) 17 (29%) 
p-value 2 ൈ 10ିଵ 5 ൈ 10ିଵ 8 ൈ 10ିଵ 2 ൈ ૚૙ି૛ 8 ൈ ૚૙ି૝ 

All Observers 
Visible MCs 

 
144 

 
15 

 
60 

 
199 

 
174 

Pref. directed (% vis.) 64 (44%) 5 (33%) 27 (45%) 65 (33%) 46 (26%) 
p-value 1 ൈ 10ିଵ 2 ൈ ૚૙ି૜ 3 ൈ ૚૙ି૜ 6 ൈ ૚૙ିૠ 2 ൈ ૚૙ି૚૙ 

 
Based upon the known MC insertion locations, we plotted the distribution of preferred vs. non-preferred cluster 
locations, for the directed placement strategy (see Fig. 7). 

 

  

Figure 7:  Graphical representation of the 
observer preference as a function of cluster 
location for one observer.  The points mark the 
center location of each cluster placed according 
to the directed strategy for every image pair in 
study.  The asterisk represent locations where the 
directed placement strategy placed MC clusters 
(but which were not preferred), and the circles 
represent locations were the directed points were 
preferred.
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3.3 Observer comments 

During the study, we recorded a number of insightful comments from observers about the appearance of simulated 
clusters and phantoms, and about the reasoning behind their preference for a specific image from an image pair. Several 
anecdotal comments are illustrated in Fig. 8.  

“Very realistic, cluster with 2 punctuate and 1 indistinct calcification; pretty suspicious;  
less frequently seen this close to the nipple (referring to directed placement - left)” 

 

“The cluster looked too close to the skin; its appearance is similar to a fibroadenoma (with peripheral 
 distribution on an oval shaped lesions).  These lesions are rarely seen so close to the nipple; they are  

seen more frequently in the upper half (referring to directed placement - left) 

 

“Appearance of calcification with holes more typical for dermal regions and more plausible  
to be on posterior side (referring to undirected placement - right)” 

 

Figure 8:  Synthetic image pairs in which radiologists commented upon the MC cluster.  In these examples, the directed 
placement is on the left and the undirected placement is on the right. (Circles have been added to mark the cluster)
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4. DISCUSSION 

We have successfully implemented an automated method for insertion of simulated MC clusters into software breast 
phantoms, using two different placement strategies.  A 2-AFC observer study with three radiologists has been used to 
validate the insertion method, and to identify the preferred placement strategy. 

The analysis of cluster realism (Table 2) shows that the observers found that the simulated clusters have a high level of 
realism.  In total, the observers found the cluster to be realistic (i.e., realism rated average or higher) in 92% of cases, 
validating the insertion method.  This high level of realism supports our use of the automated insertion method.  As such, 
it will now be fully incorporated and accelerated in our GPU-based VCT pipeline software. 

The insertion method allows for the placement of MC clusters to be guided by a pdf.  Two pdf were compared:  a 
uniform pdf, and a pdf that placed MC clusters in fibroglandular tissue.  The results of the preference study, summarized 
in Table 1, show that all observers statistically significantly preferred the undirected strategy.  The directed strategy was 
preferred 33% of clusters, and undirected strategy was preferred in 67% of clusters.  This indicates that the clusters did 
not look realistic on a background of glandular tissue. 

Support for this premise is evident in Table 4, which shows the probability of selecting the directed strategy as a function 
of the background of the MC cluster in the image with undirected placement.  These data do not show any preference for 
the placement strategy when the undirected placement strategy selected a MC cluster location within a dense tissue 
region.  This result is sensible since the directed placement locations are, by definition, selected within dense tissue 
regions; thus, when both strategies select a dense background, the radiologists have no reason to prefer one strategy over 
the other.   

Table 4 also shows that the preference for the placement of a cluster increases as the background composition at the 
insertion site becomes increasingly less dense.  Thus, radiologists prefer clusters that are superimposed upon a 
predominantly adipose region.  The observed preference may be due, in part, to the increased contrast of MCs in adipose 
regions.  The adipose regions also have more visible simulated anatomical structures including prominent ligaments, 
potentially creating a set of features that aid in making diagnostic decisions about the detected cluster.  As such, we plan 
to explore methods for adding structure in fibroglandular regions of our breast phantoms. 

All the reported results from our observer study provide evidence that the undirected strategy produced more plausible 
simulations.  It can be seen that as the observers’ confidence increased (Table 3), the radiologists were more likely to 
prefer the undirected strategy.  This evidence has led us to reject our original hypothesis about modeling MCs 
exclusively in dense phantom regions, which we justified by considering the epithelial origins of breast calcifications.  
Calcifications do originate from epithelial tissue histologically; however, it is now clear that we should not restrict 
potential MC cluster locations exclusively to dense mammographic regions.   

An additional contributing factor may be that we currently simulate dense tissue regions as having a uniform 
composition within the interior of dense compartments.  Thus, the glandular tissue may lack realism.  We have 
previously tested other methods for simulating glandular tissue, including the use of subcompartments, (21) adding 
filtered binarized noise, (22, 23) or Perlin noise (24).  As future work, we will test cluster realism with these various 
glandular tissue simulation methods.   

Finally, Fig. 7 showed the preferred locations of MC clusters.  It is clear that radiologists do not prefer MC clusters that 
are located near the distal edge of the breast.  This finding is also supported by observers’ comments, which not only 
prefer posterior locations, but also suggest that cluster location can lead to different interpretations of pathology.  We 
plan to analyze observer preference as a function of cluster location, and intend to revise the placement strategy to 
improve realism further, if possible. 

5. CONCLUSIONS 

We have developed an automatic method to insert microcalcifications into software breast phantoms.  This method was 
developed to help support VCTs that require large numbers of simulated breasts.  We validated the insertion method in a 
2-AFC study with radiologist observers.  The radiologists found the resulting cluster placement to be realistic in 92% of 
cases.  The insertion method allows for the placement of MC clusters to be guided by a probability density function.  
There was a significant preference for the cluster to be positioned on a background of adipose or mixed 
adipose/fibroglandular tissues.  These results support our inclusion of this automated placement algorithm into our 
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simulation pipeline.  Given that there was a strong preference for certain cluster locations, further research will be 
performed to continue to improve realism. 
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ABSTRACT  

 Images derived from a “phantom” are useful for characterizing the performance of imaging systems.  In 
particular, the modulation transfer properties of imaging detectors are traditionally assessed by physical phantoms 
consisting of an edge.  More recently researchers have come to realize that quantifying the effects of object 
variability can also be accomplished with phantoms in modalities such as breast imaging where anatomical structure 
may be the principal limitation in performance.  This has driven development of virtual phantoms that can be used in 
simulation environments.  In breast imaging, several such phantoms have been proposed.  In this work, we analyze 
non-Gaussian statistical properties of virtual phantoms, and compare them to similar statistics from a database of 
breast images. 

 The virtual phantoms assessed consist of three classes.  The first is known as clustered-blob lumpy 
backgrounds.  The second class is “binarized” textures which typically apply some sort of threshold to a stochastic 
3D texture intended to represent the distribution of adipose and glandular tissue in the breast.  The third approach 
comes from efforts at the University of Pennsylvania to directly simulate the 3D anatomy of the breast.  We use 
Laplacian fractional entropy (LFE) as a measure of the non-Gaussian statistical properties of each simulation. 

 Our results show that the simulation approaches differ considerably in LFE with very low scores for the 
clustered-blob lumpy background to very high values for the UPenn phantom.  These results suggest that LFE may 
have value in developing and tuning virtual phantom simulation procedures.  

Keywords: Laplacian Fractional Entropy, Breast phantoms, image statistics, and natural scene statistics 
 

1. INTRODUCTION  
 The use of “virtual” breast phantoms for evaluating new breast imaging technology has many appealing 
qualities.  These phantoms are the output of simulations of breast tissue, with the intent of capturing the effect of 
anatomical variability on the performance of imaging systems.  As such, the “phantom” may be considered as the 
ensemble of image backgrounds produced by the simulation procedure.  Virtual phantoms have advantages that arise 
from known ground truth about the object being imaged, and the ability to evaluate an unbuilt system through a 
subsequent simulation of the imaging process. 

 However, in order to be effective, a virtual phantom must accurately capture the effects of patient 
structured images.  We will refer to this goal as phantom realism; a more realistic phantom will more fully capture 
anatomical effects than a less realistic phantom.  But it is not clear at this point in time how to validate such a 
comparison, or how such a validation might depend on the task that drives development of the imaging system..     
 The approach we are exploring in this work is based on the idea that realism can be characterized by 
comparing statistical properties of the phantom ensemble (or the subsequent images) and actual patient images in 
cases where such images are available.  Traditionally, statistical properties have been limited to the power-spectrum 
[1, 2], which characterize second-order statistical properties (i.e. variance, covariance, and correlations), under the 
assumption of stationarity.  However, it is well known that the power spectrum does not fully capture the appearance 
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of some medical images [3].  For example, it is 
generally easy to differentiate between a real patient 
mammogram and a Gaussian process that has matched 
the power spectrum of the mammograms.  Figure 1 
gives examples of each of these.  The top row shows 
breast images from clinical exams that have been log-
converted to density (note that we have not applied the 
usual “for-display” processing to these images since 
we are interested in the properties of the objects being 
imaged, and no necessarily the final displayed image).  
We contend that various textural components of the 
mammograms make them readily discriminable for the 
matched Gaussian textures.   

 Figure 1 suggests that if the statistical 
properties approach is going to be effective, we will 
likely need to evaluate properties beyond the mean and 
power spectrum that fully characterize a stationary 
Gaussian process.  We consider these to be “non-
Gaussian” statistics that assess relevant higher-order 
structure in the images.  In this work we evaluate one 
such measure, known as the Laplacian Fractional 
Entropy (LFE), for this purpose [3].  LFE is based on 
response histograms of Gabor filters, which are 
intended to represent receptive fields in early visual 
cortex [4-6].  Similar to visual receptive fields, the 
measure can be tuned to different bandwidths, center-
frequencies, phase, and orientations.  The measure computes the entropy of the histogram relative to the histogram 
from a Gaussian process.  This relative entropy will be zero when the two histograms match, making the measure 
insensitive to Gaussian statistics.  The Laplacian distribution is used as a yardstick for measuring how much a 
response histogram deviates from Gaussian form.  An LFE value of 100% is interpreted as being as non-Gaussian as 
a Laplacian distribution. 

 In this paper, we compare higher-order statistical properties of various virtual breast phantoms to a sample 
of patient mammograms.  For reference we also compare the power-spectra.  It is well known from the multiple 
studies [1, 2, 7] that power spectra of projection mammograms are well described by a power-law at low spatial 
frequencies where anatomical effects dominate.  At higher frequencies, where noise is the dominant source of 
variability, the spectrum departs from the power-law.        

 

2. MATERIALS AND METHODS 
2.1 Mammograms 

 The mammograms we use were obtained from the UC Davis Medical Center under an IRB approved 
human-subjects protocol that included de-identifying the image data.  Mammograms were acquired on a Hologic 
Dimensions system (Hologic Inc., Bedford MA). The images were saved in the pre-processed mode (i.e. “for 
processing”) and converted to density by a log-transform.  This step was done to avoid any non-Gaussian statistics 
that might be introduced by nonlinear transformations in the “for-display” processing.  Pixel size in the 
mammograms was 100 microns. We use a total of 19 patient images that had a large enough central region (1024 by 
1024 pixels) to assure that response histograms would not have excessive noise. 

 

Figure 1. X-ray breast images and filtered noise. The
upper panel of images (A) are taken from the interior of the
left CC view from different patients. The images have been
log-converted from the normalized detector outputs, but no
further display processing has been applied. The lower panel
of images (B) are the result of a Gaussian process with
matched mean and power spectrum. A common intensity
window is applied to all images.

1 cm

A. Mammograms

B. Gaussian Textures
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A. AB08 B. RN10 C. Gaussian

Figure 3. Examples of Truncated Binary Process
Backgrounds. The images show examples using the
approach of Abbey and Boone (A) and Reiser and Nishikawa
(B). The processes have been integrated over a 5cm
thickness, and converted from transmission to density. A
Gaussian texture with a power-law spectrum (C) is shown for
reference.

2.2 Clustered-Blob Lumpy Backgrounds 

  The Clustered-Blob Lumpy Backgrounds 
(CBLBs) have bend developed by Bochud and 
colleagues [8, 9] as an extension of Rolland and 
Barrett’s Type I Lumpy backgrounds [10]. The idea 
behind lumpy backgrounds was that a background 
could be generated as a superposition of lump profiles 
placed at different locations throughout the 
background area.  The CBLB extended this by 
allowing the lump profile to be a localized probability 
density for a cluster made up from smaller lumps.  

 A total of five CBLBs are considered here.  
These include the process described in the original 
publication [8] and referred to as OpExp99, as well as 
four virtual breast phantoms developed in a 
subsequent publication [9].  Two virtual phantoms 
based on oriented and isotropic processes are referred 
to as SimpOri and SimpIso respectively.  The 
remaining two phantoms both sum two CBLB 
processes modeling glandular and fibrous structure.  
These also incorporate oriented and isotropic 
processes, and are referred to ad DoubOri and 
DoubIso.  The parameters for these processes are all 
taken directly from the original publications, with the 
only change being to scale the number of clusters in 
the simulation by 16 to match the larger image size 
(1024 × 1024 instead of 256 × 256) tested.  Figure 2 
gives examples from each of these processes along 
with a power-law Gaussian texture for reference. 

 It should be noted that the CBLB phantoms 
directly simulate a 2D image.  This is considerably 
simpler than the methods below, which simulate a 3D 
breast, and then project the 3D simulation onto a 2D 
detector. 

 

2.3 Truncated Binary Processes 

 The “binary-truncation” (BT) phantoms are based on the idea that the breast can be well modeled as 
mixture of adipose and glandular tissues, each characterized by its respective attenuation coefficient.  These models 
have typically neglected calcifications.  The spatial distribution of the attenuation coefficients is generated by 
thresholding a 3D random process.  The approach of Abbey and Boone [11] (AB08) uses a 3D Gaussian process 
truncated to approximately 30% volume glandular fraction.  Rieser and Nishikawa [12] (RN10) used phase 
randomization followed by thresholding to generate the distribution of adipose and glandular tissue and targeted a 
75% glandular fraction.  It should be noted that both of these approaches have somewhat higher glandular fractions 
than the 19% average volume glandular fraction of the breast as measured from dedicated breast CT images [13].   

 We used the procedures described in both publications [11, 12] to generate binary 3D backgrounds with an 
isotropic sampling of 100 μm.  The grid was 1024 × 1024 × 512, and thus captured the 5cm average thickness of a 
compressed breast in a screening mammography exam.  Phantoms were projected onto a 100 μm detector by 
summing the z-dimension of the 3D phantom.  Examples of BT phantoms from these two processes are shown with 
a Gaussian power-law process as a reference in Figure 3.     

  

A. OpExp99 B. SimpIso C. SimpOri

D. DoubIso E. DoubOri F. Gaussian

Figure 2. Examples of Clustered-Blob Lumpy Back-
grounds. The images show 256 × 256 pixel samples from
each of the five CBLB textures (A-E). A Gaussian texture
with a power-law spectrum (F) is shown for reference.
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2.4 The UPenn Virtual Breast Phantom 

 A virtual breast phantom has been under 
development at the University of Pennsylvania for 
several years [14-16].  This phantom is based on 
simulating the major anatomical components of the 
breast, including skin, adipose tissue, fibroglandular 
tissue, and Cooper’s ligaments.  The breast simulation 
is initially generated in an uncompressed state, to 
which a compression transform is applied using a 
finite element model.   

 We consider two versions of the UPenn 
phantom.  The first is the published version of the 
phantom, tailored for projection mammography [15].  
In the second version, a new approach currently under 
investigation was used that involved simulating 
additional microstructure in the adipose 
compartments.  Mammograms were simulated from 
the 3D phantom assuming, a 950 mL breast volume with 6.4 cm compressed breast thickness, a polyenergetic x-ray 
beam, and 100 μm detector pixels.  Examples images from these two phantoms are given in Figure 4. 

 

2.5 Image Analysis 

 Gaussian white noise was added to the 
phantoms to simulate the effects of quantum and 
electronic acquisition noise.  The magnitude of the 
noise was set to approximately equal the amplitude of 
anatomical noise at 1.0 cyc/mm, the spatial frequency 
at which the power spectrum begins to diverge from 
the power-law form.  Figure 5 gives examples of the 
appearance of the phantom images after noise has 
been added.  

 Power spectra were computed by sampling 
fifty 256 ×256 pixel ROIs at random from within the 
ROI of the images, These were mean subtracted and 
then windowed using a radially symmetric Hanning 
window that extended to the edge of the ROI [17]. 
The average of the squared magnitude of the Fourier 
Transform was taken as the estimate of the power 
spectrum for that image.  Averages across images 
were used as the final estimate of the power spectrum. 

 The LFE was computed according to a recent 
publication [3].  Gabor filters that spanned center frequencies from 0.125 cyc/mm to 2.8 cyc/mm were evaluated at 
six different orientations.  The filters were sine-phase with 1.4 octave bandwidth, and an aspect ratio of 1.  Filter 
responses from 1cm inside the boundary of the ROI were used.  The histograms binned the central 99% of the 
responses, with an additional 1% bin for the remaining extremal values.  

3. RESULTS AND DISCUSSION 
 The main results of this work are power and LFE averaged over orientations and plotted as a function of 
spatial frequency (i.e. power spectra and LFE spectra). 

A. No 
Microstructure

B. With 
Microstructure

C. Gaussian

Figure 4. Examples of the UPenn Virtual Breast Phantom.
The images show an example of the breast phantom being
developed at the University of Pennsylvania (A) and a recent
version that includes a model of breast microstructure (B).
The backgrounds have been converted from transmission to
density. A Gaussian texture with a power-law spectrum (C) is
shown for reference.

A. Backgrounds

B. Backgrounds with added Noise

Figure 5. Addition of Acquisition noise. Example CBLB,
TB and Upenn phantom images before and after the addition
of noise. The magnitude of the noise was set to
approximately equate power at 1 cyc/mm.
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3.1 Power Spectra 

 Figure 6 plots the power spectra for the mammograms and each of the virtual breast phantoms with added 
image noise.  In each case, a fitted line representing a power-law power spectrum is plotted for reference.  The 
mammography data in Figure 6A closely follow the power-law at low spatial frequencies until about 1.0cyc/mm .  
The exponent of this power law is 3.0.  This is consistent with previous findings [1, 2].  
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Figure 6. Power Spectra for Phantoms and Mammograms. Power spectra derived from the sample of
mammograms (A) are shown along with the three classes of virtual breast phantoms (B-D). A line representing
an ideal power-law is plotted in each case along with a Gaussian texture for each of the phantom classes.
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 The CBLBs in Figure 6B appear to rolloff at the lowest spetial frequencies plotted, before adopting an 
approximately power-law form (exponent is 3.0) from 0.1 to 1.0 cyc/mm, and then departing from this as the 
contribution of noise increases at higher frequencies.  Similar power-law evaluations of the CBLBs were made in 
the primary publications [8, 9], and the processes did not exhibit as much departure from the power law at low 
spatial frequencies.  This may be due to differences in how the power spectra were computed, although further 
investigation of this difference is warranted.  
 The truncated binary processes in Figure 6C and the UPenn phantoms in Figure 6D are well approximated 
by power-laws at low spatial frequencies, with noise-induced departure beginning at 1cyc/mm.  We note that the TB 
phantoms are fit by a power-law with an exponent of 3.3, and the UPenn phantom is fit by a power-law with 
exponent of 2.5.  
 Even with some departures at low-frequencies by the CBLBs, the general finding is that the power spectra 
of the virtual phantoms are reasonably well fit by a power-law over the frequencies in which anatomical variability 
dominates, even though the various phantoms have quite different visual appearances.  This is a testament to the 
ubiquitous nature of the power law.  However, when the goal is to distinguish between various models, the 
generality of the power law may work against its usefulness.  This serves as the motivation for investigating higher-
order statistical properties. 
    
3.2 Laplacian Fractional Entropy 

 Figure 7 shows the LFE for the CBLBs, along with a matched Gaussian texture.  Non zero LFE for the 
Gaussian texture reflects departures in the histogram due to the limited spatial extent of the ROI used to compute the 
histogram.  Also plotted for reference is the LFE computed from the sample of mammograms.  The mammograms 
start at an LFE of approximately 40% at the lowest spatial frequency measured (0.125 cyc/mm), and decrease at 
higher spatial frequencies nearing zero by about 2 cyc/mm, The Gaussian process starts at about 10% LFE and 
nearing zero by about 0.2 cyc/mm.  Surprisingly, LFE is not substantially different from the matched Gaussian 
texture across frequencies. 

 Figure 8 shows LFE plots for the TB phantoms, along with a matched Gaussian texture and mammograms.  
The TB phantoms start at approximately 30% LFE at 0.125 cyc/mm, and decrease steadily nearing zero at 1.0 

Figure 7. Laplacian Fractional Entropy for
Clustered-Blob Lumpy Backgrounds. LFE is plotted
as a function of spatial frequency for each of the five
clustered-blob backgrounds, as well as a matched
Gaussian noise texture. For reference the LFE from the
sample mammograms is also plotted (error bars = ±1
std. err.).
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Figure 8. Laplacian Fractional Entropy for
Truncated Binary Processes. LFE is plotted as a
function of spatial frequency for both of the truncated
binary backgrounds, as well as a matched Gaussian
noise texture. LFE from the sample mammograms is
also plotted (error bars = ±1 std. err.).
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cyc/mm.  While substantially greater than the Gaussian 
process, LFE from the TB processes is still substantially less 
than the average measured from mammograms.  

 Figure 9 Shows the LFE plots for the UPenn 
phantoms matched Gaussian texture, and mammograms.  At 
low spatial frequencies, the UPenn phantom without 
additional microstructure was found to exceed the LFE of 
the mammograms, with peak LFE of 92% at 0.35 cyc/mm.  
After this peak, LFE dropped rapidly to zero at 1.0 cyc/mm.  
The addition of microstructure reduced LFE values, more 
closely matching the mammograms.  

 All of the virtual phantoms had dropped to values 
near zero by 1.0 cyc/mm, although the mammograms 
maintain non-zero LFE until closer to 2.0 cyc/mm.  This 
may be a consequence of adding too much noise to the 
phantoms, thereby driving LFE to zero.       

4. CONCLUSIONS 
 This study of three classes of virtual breast 
phantoms shows that all have power spectra that are 
qualitatively similar to the power-law form that has been 
used to describe projection mammograms by Bochud [1], 
Burgess [2], Heine [7, 18], and others.  While this shows 
that the various phantoms have similar second-order 
statistical properties to clinical breast images, it also 
illustrates the limitations of the power spectrum for discriminating between phantoms.  The similarity of the 
phantoms at the level of the power-spectrum indicates the importance of higher-order structure in the appearance 
and realism of virtual breast phantoms. 

 By contrast, Laplacian Fractional Entropy is insensitive to the power spectrum of the phantoms. Instead, 
this measure focuses on non-Gaussian statistical properties in the response histograms of Gabor filters intended to 
represent receptive fields in early visual cortex.  Aside from Gaussian processes used as a reference, all of the breast 
phantoms considered here are rigorously non-Gaussian in that their probability distributions depart from that of a 
multivariate Gaussian process.  The LFE can be thought of as one possible measure of the degree of this departure.  
By this measure we find substantial differences between the different classes of breast phantoms.  The clustered-
blob lumpy backgrounds have modest values of LFE, less than 10% across spatial frequencies from 0.125 cyc/mm 
to 2.8 cyc/mm.  Binary truncation processes are somewhat higher, but are still uniformly less than the sample of 
mammograms.  The UPenn Virtual Breast Phantom has considerably higher LFE, and the addition of microstructure 
results in an LFE that is closer to the mammograms.  

 It is our belief that these examples suggest and partially illustrate the role of higher-order statistical 
properties in validating the realism of virtual breast phantoms.   
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Figure 9. Laplacian Fractional Entropy for Upenn
Phantoms. LFE is plotted as a function of spatial
frequency for the Upenn phantom both with and
without microstructure, as well as a matched
Gaussian noise texture. LFE from the sample
mammograms is also plotted (error bars = ±1 std.
err.).
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Abstract. Software anthropomorphic breast phantoms have been used in virtual 
clinical trials for preclinical validation of breast imaging systems. Virtual trial 
quality depends largely on the realism of the simulated breast anatomy. Our 
phantom design has been focused on the simulation of large-scale and meso-
scale anatomical structures, including the breast outline, skin, and matrix of 
Cooper’s ligaments and tissue compartments.  Realism of such a design has 
been confirmed in comparative studies of phantom and clinical power spectra 
and parenchymal texture. We present a novel method for simulating the hierar-
chical organization of breast tissue subcompartments, seen in detailed histologi-
cal images. The subcompartmentalization introduces microstructure in breast 
phantoms, resulting in improved realism of phantom images. The qualitative 
validation of phantoms with simulated microstructure is discussed in this paper; 
the quantitative validation in ongoing. 

Keywords: Software breast phantoms, virtual clinical trials, small-scale tissue 
simulation, stereology, testing realism. 

1 Introduction 

Virtual clinical trials (VCTs) have received considerable attention recently; a VCT is 
an efficient way to perform optimization and preclinical validation of novel breast 
imaging systems (1, 2). VCTs are based upon sophisticated computer simulations of 
breast anatomy, image acquisition, image processing and display. The synthetic im-
ages generated by VCT can be assessed by model or human observers.  

The quality of a VCT depends upon a number of factors including phantom  
realism; the phantom realism needs to be commensurate with the diagnostic task in 
question. The University of Pennsylvania (UPenn) breast anatomy model is based 
upon the simulation of large-scale and meso-scale anatomical structures; a variety of 
features are modelled, including the overall breast outline, the skin, the matrix of 
Cooper’s ligaments and tissue compartments, and the assignment of adipose and fi-
broglandular tissue to these compartments.(3) The validity of this design has been 
confirmed for a number of tasks, and the visual realism of the anatomy model is  
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supported by a number of  comparative studies of phantom and clinical power spec-
tra (4, 5) and parenchymal texture (6-8).   

That said, we are constantly striving to improve the breast anatomy model further.  
In this paper, we present a novel method for simulating the hierarchical organization 
of breast tissue subcompartments, seen in detailed histological images.  The introduc-
tion of a hierarchy of subcompartments into our breast anatomy model results in more 
realistic phantom images.   

2 Methods 

2.1 Histological Analysis 

Our existing method for simulating breast tissue structures was motivated by the ob-
served appearance of tissue compartments in existing histology and computed tomo-
graphy breast images.  In this paper we present a new analysis of histology slices 
from two breasts specimens; one obtained after breast reduction and another after 
mastopexy.  The patients were aged 33 and 50, respectively.  No abnormalities were 
detected in the two analysed breast specimens.  The histologic analysis was per-
formed at the University of Padova, Italy.  Ten histology slices were analysed, at 
least one slice from each breast quadrant.  
 

 
(a) (b) 

Fig. 1. An example of a breast histology image used in the size and shape analysis of adipose 
tissue compartments: (a) histology section with the Azan-Mallory staining; two analysed com-
partments are highlighted; (b) a binarized version of the same histology section 

Fig. 1(a) shows a detailed microscopic image of the breast obtained using Azan-
Mallory staining. The Azan-Mallory staining technique combines the original Mallory  
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connective tissue stain with azocarmine (9); as a result, collagen is stained blue, nuclei 
and cytoplasm are red, and elastic fibres are pink or unstained. The section in Fig. 1(a) 
is oriented so that the areolar region is superior.  In this example, the adipose tissue 
compartments are clearly encapsulated by the blue stained Cooper’s ligaments.  Two 
individual compartments have been highlighted to illustrate this observation.  

Digital images of the stained histologic slices were binarized by thresholding.  A 
binarized image of the matching tissue section is shown in Fig. 1(b).  The binarized 
sections were used to estimate the size and shape of the tissue compartments.  Two 
parameters, mean volume and axial ratio, were calculated using the stereological un-
folding method by Saltykov, which assumes an ellipsoidal compartment shape (10).  
From this, compartment size and shape distributions were calculated.   

Examination of Fig. 1 suggests that the thickness of the Cooper’s ligaments de-
pends upon the volume of the associated compartments.  Thus, we have also esti-
mated the volumetric fraction of the connective tissue and the average thickness of the 
Cooper’s ligaments. 

Finally, as seen in Fig. 1(a), the individual adipose compartments appear to be di-
vided into smaller compartments by interlobular fibrous septa.  Due to their small 
thickness, these interlobular fibrous septa may not be clearly visible in clinical breast 
images; however, they certainly contribute to the small-scale tissue variations seen in 
clinical images.  The combination of the thicker Cooper’s ligaments and the thinner 
interlobular fibrous septa indicate a hierarchical organization of tissue compartments.  
This observation has motivated the modification of our breast anatomy model.   

2.2 Computer Simulation 

In order to increase the realism of our breast anatomy model, we have included a 
simulation of subcompartments with septa of reduced thickness.  We begin by simu-
lating a baseline phantom, P, containing large compartments and correspondingly 
thick ligaments.  We then simulate a second subcompartment phantom, S, having the 
same size and outline as the baseline phantom, containing smaller compartments and 
thinner ligaments; the internal structure of the second phantom will form the structure 
of the subcompartments.  The final phantom is obtained by superimposing the sub-
compartment phantom on the baseline phantom.  Algorithmically, a voxel vp(x,y,z) of 
P at spatial coordinate x,y,z is replaced by the corresponding voxel vs(x,y,z) of S if and 
only if vs(x,y,z) is part of a ligament in S, and vp(x,y,z) belongs to a compartment in P.   

We tested this method with a set of preliminary models in which each compart-
ment in P was divided on average into thirty subcompartments.  In this test, we simu-
lated baseline phantoms with 333 compartments and subcompartment phantoms with 
10,000 compartments.  The simulated thickness of the interlobular fibrous septa was 
selected to be 200μm in the subcompartment phantoms, 3 times smaller than the 
600μm thickness of the primary Cooper’s ligaments in the baseline phantoms. 

The simulated microstructure was assessed subjectively based upon synthetic 
mammographic projections of phantoms with or without subcompartments.  The 
synthetic images were generated using the breast anatomy and imaging simulation  
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pipeline, developed at the University of Pennsylvania for the purpose of conducting 
VCTs of breast imaging systems (1).  The pipeline includes modules for the simula-
tion of normal breast anatomy, insertion of lesions, breast positioning and deforma-
tion, clinical image acquisition, image reconstruction and post-processing, image 
display, and image interpretation by model observers.  External modules may be 
included in the pipeline as plugins. 

The software breast phantoms with and without subcompartments were subject to 
simulated mammographic compression using a finite element deformation method 
(11).  Mammographic imaging was then simulated using a ray tracing projection 
method, assuming a poly-energetic x-ray beam without scatter, and an ideal detector 
model.  The quantum noise was simulated by adding a random Poisson process.  
The simulated image acquisition geometry corresponds to the Hologic Selenia Di-
mensions full-field digital mammography system (Hologic Inc., Bedford, MA).  The 
resulting synthetic raw projections are post-processed using a commercial software 
package (Adara, Real Time Tomography, Villanova, PA). 

3 Results and Discussion 

3.1 Histological Analysis 

Table 1 gives the values of average compartment volume, axial ratios and ligament 
thickness, as estimated from histology slides, in three different regions of the breast:  
subcutaneous (“Sub-Q”), posterior, and periglandular.  These values have been aver-
aged over 30 analysed adipose compartments.  Adipose tissue compartments have a 
larger volume in the subcutaneous (0.84 ml) and posterior (0.94 ml) regions, as com-
pared to the periglandular region (0.26 ml).  Visually, these estimates of compart-
ment volume agree with the observed appearance of breast tissue structures in these 
regions of clinical images.   

The orientation of the breast tissue compartments had relatively little dependence 
upon region; the axial ratio varied from 2.02 in the subcutaneous region to 2.91 in the 
posterior region.  This range of axial ratios corresponds to an angular difference of 
just 7 degrees.  The variation in angular ratios is considerably larger in the posterior 
region (0.30; i.e., 10% of the average angular ratio), as compared to the subcutaneous 
region (0.14; 6%) and periglandular region (0.12; 6%).  This suggests that some un-
derlying structure may exist in these areas, which constrains the shape and orientation 
of the compartments. 

Table 2 shows the volume fraction and thickness of the connective tissue, esti-
mated from the binarized images of the stained Cooper’s ligaments.  The tabulated 
values have been averaged over 10 analysed tissue slices.  The estimated average 
volume fraction was 12.3%, while the average thickness of Cooper’s ligaments was 
289 μm.  The estimated ligament thickness fits well within the range of thicknesses 
used in our previous computer simulation of Cooper’s ligaments: 200-600 μm.  The 
volume fraction showed 11% variation relative to the mean value, while the ligament 
thickness showed 5% variation relative to the mean value.   
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Table 1. Average values of compartment volumes and axial ratios in various breast regions, 
estimated from breast histological sections 

Region Volume (cm3) Axial ratio 

Sub-Q 0.84 ± 0.04 2.02 ± 0.14 
Posterior 0.94 ± 0.07 2.91 ± 0.30 
Periglandular 0.26 ± 0.01 2.04 ± 0.12 

Table 2. Average values of the connective tissue volume fraction and thickness, estimated from 
Cooper’s ligaments in breast histological sections 

 Volume fraction (%) Thickness (μm) 
Cooper’s ligaments  12.3 ± 1.4 289.2 ± 13.0 

3.2 Computer Simulation 

Fig. 2 shows preliminary results of the simulation of subcompartments in a breast 
phantom.  Fig. 2(a) show a cross-section of a baseline phantom simulated with  
 

 

 

 

 
(a) (b)  (c) (d) 

Fig. 2. Simulation of breast tissue microstructure by subcompartmentalization.  Shown are 
sections of a software phantom (a) with and (b) without subcompartments, with corresponding 
synthetic mammographic projections (c) with and (d) without subcompartments.  
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subcompartments, while Fig. 2(b) shows the same phantom without subcompart-
ments.  Figs. 2(c-d) show the corresponding synthetic mammographic projections of 
these phantoms.  In both cases, the phantoms have a total volume of 450 cm3, with 
100 μm voxels.  Subjectively, the projection image of the subcompartmentalized 
phantom shows a higher level of realism.  The simulated parenchymal pattern is en-
riched by the addition of small-scale structures.  In addition, the simulated Cooper’s 
ligaments appear less prominent and less geometric, as compared to the projection of 
the phantom without subcompartments.   

A quantitative analysis was performed by comparison of the Laplacian Fractional 
Entropy (LFE) in clinical and synthetic images.  The LFE measure describes the 
relative content of non-Gaussian statistics in breast images (12).  The LFE analysis of 
the phantoms confirmed that the addition of subcompartments yields a considerable 
improvement in the LFE measure; the phantom with subcompartments is much closer 
to clinical images (8).  The results of the LFE analysis are shown in Fig. 3.  At low 
spatial frequencies, the phantom without subcompartments exceeds the LFE estimated 
in clinical mammograms.  The peak LFE value of 92% occurs at 0.35 cyc/mm.  At 
spatial frequencies above this peak, the LFE drops to zero at 1.0 cyc/mm.  Subcom-
partmentalization reduces the LFE values, thus matching closely those estimated in 
mammograms.  Based upon our current simulation method, subcompartmentalization 
increases the simulation time proportional to the square root of the number of com-
partments.  This may be potentially prohibitive for real-time VCT simulations.  As a 
viable alternative, we could pre-compute a number of subcompartment phantoms to 
be combined randomly with baseline phantoms created in real time.  

 

Fig. 3. Laplacian Fractional Entropy (LFE) as a function of spatial frequency, estimated from 
phantoms generated with and without subcompartments.  The phantom LFE values are shown 
in comparison with those estimated from clinical mammograms and simulated Gaussian noise.  
Error bars show ±1 standard deviation.  (Reproduced with permission from Ref. #8.) 
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Our future work will include a more detailed analysis of phantoms containing sub-
compartments, and a more complete exploration of the various simulation parameters 
for each of the tissue regions analysed in this work (subcutaneous, deep, and 
periglandular).  In this way, we hope to add spatial dependence to our anatomy simu-
lation method, further improving realism.  

4 Conclusions 

We have simulated the microstructure of breast tissue by adding subcompartments to 
our current design of anthropomorphic breast phantoms.  This modification was mo-
tivated by the hierarchical organization of Cooper’s ligaments and interlobular fibrous 
septa, as shown by Azan-Mallory stained breast histologic slices. 

Subjectively, synthetic images of phantoms with subcompartmentalization show an 
improved level of realism; the simulated parenchymal pattern has been enriched, 
while the simulated Cooper’s ligaments appear less geometric.  The observed im-
provement in the appearance of phantom images is in agreement with a preliminary 
quantitative validation based upon Laplacian Fractional Entropy analysis.  
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Abstract. Mammographic texture has been reported as a biomarker of cancer 
risk.  Recent publications also suggest correlation between the topology of the 
breast ductal network and risk of cancer.  The ductal network can be visualized 
by galactography, the preferred imaging technique for nipple discharge.  We 
present current results about the correlation between topological and textural 
properties of clinical breast images.  This correlation was assessed for 41 ga-
lactograms and 56 mammograms from 13 patients.  Topology was character-
ized using feature extraction techniques arising from text-mining, validated 
previously in the classification of normal, benign, and malignant galactograms.  
In addition, we calculated 26 texture descriptors using an automated breast im-
age analysis pipeline.  Regression analysis was performed between texture and 
topological descriptors averaged over all images of the same patient.  These 
data demonstrate a correlation between topology and a subset of texture features 
with borderline statistical significance due to the limited sample size. 

Keywords: Texture analysis, topology descriptors, galactograms, mammo-
grams. 

1 Introduction 

Previously, we analysed the topological properties of the branching network of breast 
ducts as visualized by galactography, an x-ray imaging procedure of the contrast-
enhanced breast ductal network (1-3).  That analysis suggested a correlation between 
cancer risk and ductal network topology; this correlation also has been supported by 
evidence from murine cancer models (4).  Clinical visualization of breast ducts is, 
however, not routinely performed; galactography is indicated infrequently, and it 
mostly commonly reveals benign findings (5, 6).   
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On the other hand, texture descriptors of breast parenchyma are known to correlate 
with cancer risk (7-9).  Our work is motivated by a desire to determine whether there 
is an association between parenchymal texture descriptors and ductal topology.  Such 
an analysis would lead to improved models of breast anatomy, and may lead to a bet-
ter understanding of breast cancer risk.  Currently, breast cancer risk is estimated 
using patient demographic information and parenchymal texture features extracted 
from 2D mammograms.  The spatial arrangement of breast tissue is, however, three-
dimensional, stressing the need to understand the relationship between parenchymal 
structure and image texture.  

The UPenn X-ray Physics Lab has extensive experience with the simulation of 
breast anatomy and imaging (10, 11).  The development of the UPenn breast phan-
tom is predicated upon a set of anatomically justified elements.  To that end, we have 
chosen not to model the parenchymal texture by a random field with statistical proper-
ties similar to clinical data.  This development process has been incremental, and 
continues to this day.  For example, we have just recently begun to model the hierar-
chical organization of Cooper’s ligaments seen in breast histology slices.  A prelimi-
nary validation of a model of this small scale tissue detail, published separately in this 
proceedings, indicates good agreement with clinically estimated texture (12).   

This paper presents our current results about the correlation between the ductal to-
pology of clinical galactograms and the parenchymal textural properties of clinical 
mammograms from the same group of women.  Understanding the relationship be-
tween mammographic texture and spatial distribution of breast anatomy will help 
optimize and extend our fully automated software pipeline for breast anatomy and 
imaging simulation; ultimately, we would like to be able to simulate specific cohorts 
of women, stratified by age, risk, and other factors. 

2 Methods 

2.1 Topological Analysis of Galactograms 

In this paper, we analysed images of existing, anonymized clinical galactograms of 49 
women, obtained from Virginia Commonwealth University.  The data collection was 
performed after IRB review and was HIPAA compliant.  Clinical galactograms were 
digitized from film, and categorized based upon the visibility of the ductal network.  
Ductal trees were traced manually from galactograms, followed by Prufer encoding of 
the breadth-first labelled ductal tree nodes (3).  Then tf-idf significance weighting 
(3), originally used in text mining, was performed on the traced and encoded ductal 
trees.  After manually tracing the ductal networks, a subset of 41 galactograms from 
13 patients with well-defined ductal trees was selected for further processing and 
testing.   

2.2 Texture Analysis of Mammograms 

We measured 26 texture features in 56 digitized mammograms from the 13 selected 
patients imaged at Virginia Commonwealth University. Texture analysis was performed 
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using a fully automated software pipeline which extracted a large set of image features 
from the digitized mammograms (13). The pipeline calculates texture feature maps at 
points on a regular spatial lattice, determined by two parameters: the window size and 
the lattice distance.  Here we use a window size of 63 pixels, and a lattice distance of 31 
pixels.  The analysed features are organized into three groups, including (i) descrip-
tors of grey-level histograms, (ii) co-occurrence features, and (iii) run length features.  
These texture features have been used previously in breast cancer risk assessment 
studies (9).  For the correlation analysis, the texture feature maps were averaged over 
the whole breast region (excluding the pectoral muscle and air). 

2.3 Hypothesis Testing 

We tested the hypothesis that there is a correlation between mammographic texture 
features and ductal topology descriptors.  To that end, we have calculated the linear 
regression (14).  The goal was to predict values of texture features averaged over all 
mammograms of the same patient as a function of the topological properties estimated 
from the corresponding manually-traced ductal networks, averaged over all galacto-
grams of the same patient.  Prior to the regression analysis, we combined the tf-idf 
topological descriptors via principal component analysis (PCA).  The regression 
model considered the first 13 PCA components and the 26 texture features.  

2.4 Power Calculations 

It can be demonstrated that a small sample size (in this case 13 patients), could lead to 
large estimated p-values and hence rejection of valid linear regression models (large 
Type II error). To demonstrate the effect of sample size, we simulated an augmented 
dataset by bootstrapping (15).  The bootstrapping was performed by replicating data 
records, with added Gaussian noise, for each PCA attribute and response variable.  
The standard deviation of the noise was 50% of the estimated standard deviation of 
the attributes or response variables. 

3 Results and Discussion 

Fig. 1 shows an example of a clinical galactogram used in this study (Fig. 1(a)), and 
the corresponding manually-traced ductal tree (Fig. 1(b)).  The Prufer encoding and 
the tf-idf weights corresponding to the traced tree is also given (Fig. 1(c-d)).  The 
example shown illustrates a breast with a malignant finding.  Fig. 2 shows an exam-
ple of a clinical mammogram from the same woman (Fig. 2(a)) and the corresponding 
texture feature map (Fig. 2(b)).  Shown in this example, is a map of the entropy  
texture feature.   
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(a) (b) 

[ 1  1  3  4  6 10 10  6 11 16 16 11 17 24 24 17 25 34  
 34 47 50 50 47 25  4  7 12 18 26 26 18 27 38 38 49 49  
 27 12  7 13 20 28 28 20 29 29 13 21 30 30 21  3  5  5] 

(c) 

[0.00 0.11 0.45 0.36 0.40 0.50 0.71 0.00 0.50 0.77 
 1.04 0.77 0.97 1.11 0.83 0.00 0.00 1.04 1.55 1.27 
 1.45 1.19 0.00 0.00 1.27 0.00 0.00 0.00 0.00 0.00 
 0.00 1.27 0.00 0.00 1.66 1.55 0.00 0.00 1.55 0.00 
 0.00 1.45 0.00 2.04 2.19 1.66 0.00 1.90 0.00 0.00 
 2.19 0.00 0.00 0.00 0.00 1.55 0.00 0.00 0.00 3.36] 

(d) 

Fig. 1. Illustration of the topological descriptors of the breast ductal network. Shown are:  
(a) a clinical galactogram with malignant finding; (b) the corresponding manually-traced ductal 
tree; (c) the Prufer encoding; and (d) the tf-idf weights corresponding to the ductal tree.  
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Fig. 2. The clinical mammogram of the patient from Fig. 1 (left) and the corresponding map of 
the entropy texture feature (right) 

Fig. 3 shows the regression analysis results.  A borderline statistical significance 
was observed for three texture features (features 9-11, p-values between 0.05 and 
0.1); three additional features (features 17, 20, 24) had p-values between 0.1 and 0.15.  
It is likely that statistical significance was not achieved due to the limited sample size; 
thus, we are prevented from drawing a definitive conclusion about the correlation 
between texture and topology.  The observed results, however, suggest a possible 
correlation between topological descriptors and several texture features.  The boot-
strap analysis of a hypothetically enlarged dataset with a sample size of 26 suggests 
that a statistically significant regression (at a significance level of 0.05) could be 
achieved between various texture features and topological descriptors.  Fig. 3 shows 
the p-values from the bootstrap analysis.  

The potential for inter-correlation between individual texture features was ac-
counted for by applying PCA before performing the regression analysis, as PCA uses 
orthogonal transformations to convert the original data into a set of linearly uncorre-
lated variables.  The bootstrap analysis performed in this paper to estimate the effect 
of sample size, assumed the noise in the enlarged data set to have a standard deviation 
equal to 50% of the standard deviation in individual sample data. 

The results presented in this paper are based upon an initial analysis of 13 patients.  
We are currently analysing a larger set of clinical breast images; we expect to double 
the sample size in the near future.  If the linear dependence between the texture and 
topology is confirmed (as suggested from our initial analysis and supported by boot-
strapping), texture descriptors could be used as a proxy for topology, since the ductal 
network is not routinely visible in clinical images.  Identifying texture features, or 
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combinations of texture features, which have the strongest correlation with topology 
could improve the understanding of texture-based risk biomarkers.   

If, however, the increased sample size does not confirm the correlation between to-
pology and texture, it could suggest that topology may carry risk-related information 
independent from texture descriptors.  This could potentially lead to an improvement 
in the accuracy of breast cancer risk estimation techniques, assuming a clinically fea-
sible method for the visualization and characterization of breast ducts (e.g., MRI or 
tomosynthesis) is available. 

 

 

Fig. 3. p‐value for the regression of individual texture features (averaged over all mammograms 
of the same patient) as a function of principal component analysis (PCA) components for the 
topological descriptors (tf‐idf weights, averaged of all the traced ductal networks of the same 
patient). Shown are the results of the initial analysis of 13 patients, as well as the bootstrap 
results modelling a dataset of 26 cases. 

It is worth noting the limitations of the current study.  First, the ductal trees ana-
lysed in this paper were manually-traced from digitized galactograms.  The manual 
tracing was performed by one person (a third-year medical student with experience in 
breast imaging).  We believe that manual tracing did not compromise the analysis.  
In our previous study of ductal topology, we observed relatively low variations (a 
root-mean-square fractional error on the order of 2%) in estimated topological fea-
tures due to manual tracing (2).   
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Additional potential limitations include the use of average texture descriptors, and 
the inter-correlation between individual descriptors of texture (or topology). In this 
paper, the regression analysis was performed using texture features averaged over  
the breast region in each mammographic image. These average values may suppress 
the differences in feature histograms calculated over mammographic images. In the 
future, we may repeat the analysis based upon other histogram moments, or using  
the full histogram as the texture descriptor.   

4 Conclusion 

We have performed a regression analysis between topological descriptors of the 
breast ductal network extracted from previously acquired, anonymized clinical galac-
tograms, and texture descriptors estimated from corresponding clinical mammograms.  
Ductal networks were extracted from galactograms by manual tracing. The texture 
features were estimated using a fully automated image analysis pipeline. Initial analy-
sis of clinical images from 13 women suggests correlation with borderline signifi-
cance for a subset of texture descriptors. The identified subset of texture descriptors 
could hypothetically be used as proxy for ductal topological properties. Analysis of a 
larger number of clinical cases is ongoing. 
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